

Published on Web 07/06/2006

Metal-Catalyzed Cycloisomerization of Enyne Functionalities via a 1,3-Alkylidene Migration

Ming-Yuan Lin, Arindam Das, and Rai-Shung Liu*

Department of Chemistry, National Tsing-Hua University, Hsinchu 30043, Taiwan, Republic of China

Received April 27, 2006; E-mail: rsliu@mx.nthu.edu.tw

Metal-catalyzed cycloisomerization of enynes often leads to skeletal rearrangement because "nonclassical" cations participate as reaction intermediates.¹ Among literature reports, migration of a 1,2- and 1,3-alkylidene fragment is very interesting in mechanistic and synthetic aspects (eqs 1 and 2 in Scheme 1).^{2a,3} In such processes, the olefin double bond of the enyne substrate is cleaved and migrated to the alkyne carbon (eqs 1-3 in Scheme 1). Reports of a 1,3-alkylidene migration are limited strictly to formation of metathesis-type product **II**;³ little is known for other processes.^{3e} Echavarren recently proposed a 1,3-alkylidene migration in the cycloisomerization of 1,6-enynes using AuPPh₃⁺ catalyst as depicted in eq 3.^{3e,4} Unfortunately, this cyclization is only extensible to only two instances, IV and V (yields > 50%, eq 3), whereas most 1,6-envnes are catalyzed by this gold catalyst to give 1,3diene II, cyclopropane derivative III, and other byproducts.^{3e,4,5} Here we report a new metal-catalyzed cycloisomerization of cis-4,6-dien-1-yn-3-ols, for which the 1,3-alkylidene migration is unambiguously established by both ¹³C-labeling experiments and product structures. This new cycloisomerization is applicable to a wide range of substrates.

As shown in Scheme 2, treatment of *cis*-4,6-dien-1-yn-3-ol **1** with PtCl₂ (5 mol %) in hot toluene (80 °C, 30 min) produced styrene derivative **2** in 92% isolated yield. The ease and reliability with this catalytic reaction are manifested by the high efficiencies of other catalysts at optimum conditions: $Zn(OTf)_2/MS 4 Å (10 mol %, 78\% 2)$ and AuCl/MS 4 Å (5 mol %, 81% 2). In the absence of MS 4 Å, AuCl alone (5 mol %) gave tertiary alcohol **3** (CH₂-Cl₂, 20 °C) in 75% yield in addition to species **2** (6%). AuCl₃ was equally active in catalytic activity at 20 °C (entry 6). The structures of compounds **2** and **3** were identified by ¹H NOE effect, which reveals that the vinyl and tertiary alcohols of compounds **2** and **3** are located at the C(2) rather than the expected C(4) carbon, clearly indicative of a 1,3-isopropylidene migration.⁶

We prepared various cis-4,6-dien-1-yn-3-ols 4-17 to generalize this catalytic cyclization, and all these substrates gave a single product efficiently, except alcohol 17. For alcohols 4-10, PtCl₂ was used as the catalyst because of its better chemoselectivity and cyclization efficiency. Entries 1-3 provide additional examples for cyclization of cis-4,6-dien-1-yn-3-ols 4-6, which afforded styrene derivatives 18-20 in 78-82% yields. ¹H NOE effects confirmed the structures of compounds 19 and 20. This cyclization works efficiently with alcohols 7 and 8 via alternation of their alkenyl substituents, giving desired styrene derivatives 21-22 in 86-87% yields. This catalytic reaction is extensible to acyclic substrates 9 and 10, producing species 23 and 24 in 86 and 75% yields, respectively. The value of this catalytic reaction is again demonstrated by its applicability to 2-alkenylbenzylic alcohols 11-16. We examined the catalytic cyclization of alcohol 11 with PtCl₂, AuCl, AuCl₃, and Zn(OTf)₂; PtCl₂/MS 4 Å gave isopropylidene product 25 in 64% yield in addition to a byproduct (6%), whereas

Scheme 1

Scheme 2

Ć		•	2 2		н
vst ^a	condition ^a	vields ^b	catalvst	condition	yields

catalyst	condition	yields"	catalyst	condition	yielus
(1) PtCl ₂	toluene 80 ⁰ C, 30 r	2 (92%) nin	(4) AuCl	CH ₂ Cl ₂ , 20 ⁰ C 1 h	3 (75%) 2 (6%)
(2) Zn(OTf) ₂	toluene 80 ⁰ C, 1 h	2 (60%)	(5) AuCl + MS 4Å	CH ₂ Cl ₂ , 20 ⁰ C 1 h	2 (81%)
$\begin{array}{c} \text{(3) Zn(OTf)}_2 \\ + \text{MS 4} \text{\AA} \end{array}$	toluene 80 ⁰ C, 1 h	2 (78%)	(6) AuCl ₃	$CH_2Cl_2, 20^0C$ 1 h	3 (83%) 2 (6%)

^{*a*} 5 mol% for PtCl₂, AuCl and AuCl₃, 10 mol% for Zn(OTf)₂, [substrate] = 0.80-1.0 M. ^{*b*} Yields of products are given after separation from silica column

AuCl₃/MS 4 Å gave desired **25** in low yield (25%) at 60 °C in DCE. In the presence of MS 4 Å, $Zn(OTf)_2$ and AuCl gave product **25** in respective yields of 81 and 70% (see Table S-1 in Supporting Information). Accordingly, $Zn(OTf)_2/MS$ 4 Å was selected as the catalyst because of its best cyclization efficiency. Cyclization of these alcohols with $Zn(OTf)_2$ in hot toluene (90 °C, 3 h) yielded naphthalene derivatives **26–30** in 81–86% yields. We used ¹H NOE effects to elucidate the structures of **27**, **28**, and **30**,⁶ which reveal that their alkenyl substituents are located at the C(2) carbon rather than the original C(4) carbon, consistent with a 1,3-shift. The cyclization of alcohol **17** bearing a disubstituted alkene, however, gave expected naphthalene **31** in low yield (33%).

We prepared ¹³C-enriched samples C(6)-1 and C(3)-1 with 10% ¹³C content at the C(6) and C(3) carbons of alcohol 1, respectively (see Supporting Information). Treatment of C(6)-1 with PtCl₂ produced styrene C(4)-2 with the ¹³C content at the C(4) carbon according to ¹³C⁻¹H HMQC and HMBC spectra. Similarly, alcohol C(3)-1 gave product C(1)-2 with the ¹³C content at the C(1) carbon.

 Table 1.
 Metal-Catalyzed Cyclization of Various

 4,6-Dien-1-yn-3-ols
 1

		h	
alcohols ^a	catalysts (yields) ^c	alcohols	catalysts (yields) ^c
X HO	X	R^1 R^2 HO	R^1 R^3 R^3
(1) X = CH ₂ (4) (2) X = O (5)	PtCl ₂ (18 , 78%) PtCl ₂ (19 , 78%)	(8) R ¹ = R ² = H, R ³ = Me (11)	Zn(OTf) ₂ (25, 81%)
(3) X = CH(<i>t</i> -Bu) (6) ∽ ∽ ∽ ∽ ∽ Ph	PtCl ₂ (20 , 82%)	(9) R ¹ = R ² = H, R ³ = Ph (12)	Zn(OTf) ₂ (26 , 84%)
	Ph PtCh (21 , 86%)	(10) R ¹ = OMe R ² = H, R ³ = Me (13)	Zn(OTf) ₂ (27 , 81%)
		(11) R ² = OMe, R ¹ = H, R ³ = Me (14)	Zn(OTf) ₂ (28 , 84%)
⁽⁵⁾ HO (8)	PtCl ₂ (22 , 87%)	(12) R ¹ ,R ² = OCH ₂ O, R ¹ = H, R ³ = Me (15)) Zn(OTf) ₂ (29 , 86%)
R^1	R^1	(13) R ¹ =F R ² = H, R ³ = Me (16)	Zn(OTf) ₂ (30 , 83%)
HO (6) R ¹ = Me, R ² = Ph (9)	ا PtCl ₂ (23 , 86%)		⁹ CC _{3H7}
(7) R ¹ = H, R ² = Ph (10)	PtCl ₂ (24, 75%)	HO (17)	Zn(OTf) ₂ (31 , 33%)

^a 5 mol% PtCl₂, toluene, 80 0 C, 30 min, [substrate] = 0.80 M. ^b 10 mol% Zn(OTf)₂, MS 4Å toluene, 90 0 C, 2.5-3.5 h, [substrate] = 0.80 M. ^c Yields were reported after separation from a silica column.

Scheme 3

Scheme 4

These labeling results reconfirm the occurrence of a 1,3-isopropylidene shift for alcohol **1**.

The lack of byproducts, such as species **II** and **III** (Scheme 1), leads us to believe that this new cycloisomerization proceeds through an unprecedented mechanistic pathway. The low cyclization efficiency of alcohol **17** suggests the participation of a tertiary carbocationic intermediate generated from other alcohols **4**–**16**. As shown in Scheme 4, the mechanism involves an initial *6-endo-dig* cyclization of Pt(II)– π -alkyne **A** to give species **B**, which forms a nonclassical carbocation **C** via a through-space overlap of the tertiary cation with the electron-rich Pt–C=CH double bond.^{7,8a} The participation of platinum carbenoid **G**, proposed by Echavarren in the gold example,^{3e} is not evident here, but cyclohexenone **H** was obtained for an internal alkyne analogue using the PtCl₂ catalyst.^{8–10} The key factor to accelerate the 1,3-isopropylidene shift is the formation of an allylic cation **D**, which causes the cleavage of the C(4) isopropyl σ -carbon bond of species **C**. Further cleavage of the cyclopropane ring of species **D** via dissociation of PtCl₂ regenerates cyclohexadienyl alcohol intermediate **E**, which in the presence of PtCl₂ gives tertiary benzylic cation **F** and ultimately leads to observed products **2** and **3**. In the case of benzylic alcohol substrate **11**, we envisage that the nonclassical carbocation **C'** forms a stable benzylic cation **I**, and ultimately afforded observed naphthalene **25** through formation of intermediate **E'**.

In summary, we report the metal-catalyzed cycloisomerization of *cis*-4,6-dien-1-yn-3-ols with an unusual skeletal rearrangement; this catalytic reaction is applicable to a wide range of substrates. Its 1,3-migration pathway is clearly established by suitable experimental evidences. Application of this new catalysis of a complex molecule is under current investigation.

Acknowledgment. The authors thank to the National Science Council, Taiwan, for supporting this work.

Supporting Information Available: Table for cyclization of alcohol **11** using various catalysts, formation of product **H** from internal alkyne analogues using the PtCl₂ catalyst, experimental procedure, NMR spectra (including HMQC, HMBC, and ¹³C-labeling experiments), and spectra data of compounds **1–31**. This material is available free of charge via the Internet at http://pubs.acs.org.

References

- See selected reviews: (a) Ma, S.-M.; Yu, S.; Gu, Z. Angew. Chem., Int. Ed. 2006, 45, 200. (b) Bruneau, C. Angew. Chem., Int. Ed. 2005, 44, 2328. (c) Aubert, C.; Buisine, O.; Malacria, M. Chem. Rev. 2002, 102, 813. (d) Mendez, M.; Mamane, V.; Fürstner, A. Chemtracts 2003, 16, 397. (e) Diver, S. T.; Giessert, A. J. Chem. Rev. 2004, 104, 1317.
- (2) Recently, we reported a 1,2-alkylidene^{2a} and 1,3-methylene transfer process,^{2b} respectively, for cycloisomerization of 1,5-enynes and 6,6-disubstituted 3,5-dien-1-ynes using TpRuPPh₃(CH₃CN)₂PF₆ to generate initial ruthenium—vinylidene intermediates. The mechanism and reaction pattern of the two cyclizations are completely different from those observed for this new cyclization. See: (a) Madhushaw, R.; Lo, C.-Y.; Hwang, C.-W.; Su, M.-D.; Shen, H.-C.; Pal, S.; Shaikh, I. R.; Liu, R.-S. J. Am. Chem. Soc. 2005, 127, 4186.
- (3) Selected examples for metathesis-type products besides Grubbs' catalyst: (a) Trost, B. M.; Yanai, M.; Hoogstein, K. J. Am. Chem. Soc. 1993, 115, 5294. (b) Chatani, N.; Kataoka, K.; Murai, S.; Furukawa, N.; Seki, Y. J. Am. Chem. Soc. 1998, 120, 9104. (c) Mendez, M.; Munoz, M. P.; Nevado, C.; Cardenas, D. J.; Echavarren, A. M. J. Am. Chem. Soc. 2001, 123, 10511. (d) Fürstner, A.; Szillat, H.; Stelzer, F. J. Am. Chem. Soc. 2000, 122, 6785. (e) Nieto-Oberhuber, C.; Munoz, P. M.; Bunuel, E.; Nevado, C.; Cardenas, D. J.; Echavarren, A. M. Angew. Chem., Int. Ed. 2004, 43, 2402.
- (4) In this AuPPh₃+-based catalysis,^{3e} the cycloisomerization proceeds at room temperatures; however, the chemoselectivity heavily depends on alternation of the alkenyl substituents, the connecting atom X.^{3e}
 (5) Diene products **IV** and **V** were also produced from Rh(1)-catalyzed
- (5) Diene products IV and V were also produced from Rh(1)-catalyzed cycloisomerization of 1,6-enynes via initial formation of rhodium-vinylidene intermediates; however, there is no skeletal rearrangement according to the ²H-labeling experiments. See: Kim, H.; Lee, C. J. Am. Chem. Soc. 2005, 127, 10180.
- (6) Treatment of alcohol 1 with TfOH (10 mol %) in toluene (23 °C, 10 min) produced two new products distinct from 2 and 3, and this information indicates that the catalytic activity of Zn(OTf)₂ is not caused by TfOH. See Scheme S2 in the Supporting Information.
- by TfOH. See Scheme S2 in the Supporting Information.
 (7) (a) Winstein, S.; Shtavsky, M.; Norton, C.; Woodward, R. B. J. Am. Chem. Soc. 1955, 77, 4183. (b) Winstein, S.; Lewin, A. H.; Pande, K. C. J. Am. Chem. Soc. 1963, 85, 2324.
- (8) (a) Fürstner, A.; Davies, P. W.; Gress, T. J. Am. Chem. Soc. 2005, 127, 8244 and references therein. (b) Kusama, H.; Takaya, J.; Iwasawa, N. J. Am. Chem. Soc. 2002, 124, 11592. (c) Luzung, M. R.; Markham, J. P.; Toste, F. D. J. Am. Chem. Soc. 2004, 126, 10858.
 (1) Our architecture of the section of the se
- (9) Our preliminary results reveal that product H was produced in 65% yield from an internal alkyne analogue S3 (see Scheme S1 in Supporting Information).
- (10) In the PtCl₂ catalysis, the methoxy derivative of alcohol 1 in hot toluene (80 °C, 30 min) gave naphthalene product 2 in 76% yield; this information suggests that propargyl OPtCl₂⁻ is not involved in the reaction mechanism.

JA062515H